作者:王先荣
前言 图像分割指的是将数字图像细分为多个图像子区域的过程,在OpenCv中实现了三种跟图像分割相关的算法,它们分别是:分水岭分割算法、金字塔分割算法以及均值漂移分割算法。它们的使用过程都很简单,下面的文章权且用于记录,并使该系列保持完整吧。分水岭分割算法 分水岭分割算法需要您或者先前算法提供标记,该标记用于指定哪些大致区域是目标,哪些大致区域是背景等等;分水岭分割算法的分割效果严重依赖于提供的标记。OpenCv中的函数cvWatershed实现了该算法,函数定义如下:void cvWatershed(const CvArr * image, CvArr * markers)
其中:image为8为三通道的彩色图像;
markers是单通道整型图像,它用不同的正整数来标记不同的区域,下面的代码演示了如果响应鼠标事件,并生成标记图像。生成标记图像
//当鼠标按下并在源图像上移动时,在源图像上绘制分割线条
private void pbSource_MouseMove(object sender, MouseEventArgs e) { //如果按下了左键 if (e.Button == MouseButtons.Left) { if (previousMouseLocation.X >= 0 && previousMouseLocation.Y >= 0) { Point p1 = new Point((int)(previousMouseLocation.X * xScale), (int)(previousMouseLocation.Y * yScale)); Point p2 = new Point((int)(e.Location.X * xScale), (int)(e.Location.Y * yScale)); LineSegment2D ls = new LineSegment2D(p1, p2); int thickness = (int)(LineWidth * xScale); imageSourceClone.Draw(ls, new Bgr(255d, 255d, 255d), thickness); pbSource.Image = imageSourceClone.Bitmap; imageMarkers.Draw(ls, new Gray(drawCount), thickness); } previousMouseLocation = e.Location; } } //当松开鼠标左键时,将绘图的前一位置设置为(-1,-1) private void pbSource_MouseUp(object sender, MouseEventArgs e) { previousMouseLocation = new Point(-1, -1); drawCount++; }
您可以用类似下面的方式来使用分水岭算法:
使用分水岭分割算法
/// <summary>
/// 分水岭算法图像分割 /// </summary> /// <returns>返回用时</returns> private string Watershed() { //分水岭算法分割 Image<Gray, Int32> imageMarkers2 = imageMarkers.Copy(); Stopwatch sw = new Stopwatch(); sw.Start(); CvInvoke.cvWatershed(imageSource.Ptr, imageMarkers2.Ptr); sw.Stop(); //将分割的结果转换到256级灰度图像 pbResult.Image = imageMarkers2.Bitmap; imageMarkers2.Dispose(); return string.Format("分水岭图像分割,用时:{0:F05}毫秒。\r\n", sw.Elapsed.TotalMilliseconds); }
金字塔分割算法
金字塔分割算法由cvPrySegmentation所实现,该函数的使用很简单;需要注意的是图像的尺寸以及金字塔的层数,图像的宽度和高度必须能被2整除,能够被2整除的次数决定了金字塔的最大层数。下面的代码演示了如果校验金字塔层数:校验金字塔分割的金字塔层数
/// <summary>
/// 当改变金字塔分割的参数“金字塔层数”时,对参数进行校验 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void txtPSLevel_TextChanged(object sender, EventArgs e) { int level = int.Parse(txtPSLevel.Text); if (level < 1 || imageSource.Width % (int)(Math.Pow(2, level - 1)) != 0 || imageSource.Height % (int)(Math.Pow(2, level - 1)) != 0) MessageBox.Show(this, "注意:您输入的金字塔层数不符合要求,计算结果可能会无效。", "金字塔层数错误"); }
使用金字塔分割的示例代码如下:
使用金字塔分割算法
/// <summary>
/// 金字塔分割算法 /// </summary> /// <returns></returns> private string PrySegmentation() { //准备参数 Image<Bgr, Byte> imageDest = new Image<Bgr, byte>(imageSource.Size); MemStorage storage = new MemStorage(); IntPtr ptrComp = IntPtr.Zero; int level = int.Parse(txtPSLevel.Text); double threshold1 = double.Parse(txtPSThreshold1.Text); double threshold2 = double.Parse(txtPSThreshold2.Text); //金字塔分割 Stopwatch sw = new Stopwatch(); sw.Start(); CvInvoke.cvPyrSegmentation(imageSource.Ptr, imageDest.Ptr, storage.Ptr, out ptrComp, level, threshold1, threshold2); sw.Stop(); //显示结果 pbResult.Image = imageDest.Bitmap; //释放资源 imageDest.Dispose(); storage.Dispose(); return string.Format("金字塔分割,用时:{0:F05}毫秒。\r\n", sw.Elapsed.TotalMilliseconds); }
均值漂移分割算法
均值漂移分割算法由cvPryMeanShiftFiltering所实现,均值漂移分割的金字塔层数只能介于[1,7]之间,您可以用类似下面的代码来使用它:使用均值漂移分割算法
/// <summary>
/// 均值漂移分割算法 /// </summary> /// <returns></returns> private string PryMeanShiftFiltering() { //准备参数 Image<Bgr, Byte> imageDest = new Image<Bgr, byte>(imageSource.Size); double spatialRadius = double.Parse(txtPMSFSpatialRadius.Text); double colorRadius = double.Parse(txtPMSFColorRadius.Text); int maxLevel = int.Parse(txtPMSFNaxLevel.Text); int maxIter = int.Parse(txtPMSFMaxIter.Text); double epsilon = double.Parse(txtPMSFEpsilon.Text); MCvTermCriteria termcrit = new MCvTermCriteria(maxIter, epsilon); //均值漂移分割 Stopwatch sw = new Stopwatch(); sw.Start(); OpenCvInvoke.cvPyrMeanShiftFiltering(imageSource.Ptr, imageDest.Ptr, spatialRadius, colorRadius, maxLevel, termcrit); sw.Stop(); //显示结果 pbResult.Image = imageDest.Bitmap; //释放资源 imageDest.Dispose(); return string.Format("均值漂移分割,用时:{0:F05}毫秒。\r\n", sw.Elapsed.TotalMilliseconds); }
函数cvPryMeanShiftFiltering在EmguCv中没有实现,我们可以用下面的方式来使用:
调用均值漂移分割//均值漂移分割
[DllImport("cv200.dll")] public static extern void cvPyrMeanShiftFiltering(IntPtr src, IntPtr dst, double spatialRadius, double colorRadius, int max_level, MCvTermCriteria termcrit);
分割效果及性能对比
上述三种分割算法的效果如何呢?下面我们以它们的默认参数,对一幅2272x1704大小的图像进行分割。得到的结果如下所示:
图1 分水岭分割算法(左图白色的线条用于标记区域)
图2 金字塔分割算法
图3 均值漂移分割算法
从上面我们可以看出: (1)分水岭分割算法的分割效果效果最好,均值漂移分割算法次之,而金字塔分割算法的效果最差; (2)均值漂移分割算法效率最高,分水岭分割算法接近于均值漂移算法,金字塔分割算法需要很长的时间。 值得注意的是分水岭算法对标记很敏感,需要仔细而认真的绘制。
本文的完整代码如下:
本文完整代码
using System;
using System.Collections.Generic; using System.ComponentModel; using System.Data;using System.Drawing;
using System.Linq;using System.Text;
using System.Windows.Forms;using System.Diagnostics;using System.Runtime.InteropServices;using Emgu.CV;using Emgu.CV.CvEnum;using Emgu.CV.Structure;using Emgu.CV.UI;namespace ImageProcessLearn{ public partial class FormImageSegment : Form { //成员变量 private string sourceImageFileName = "wky_tms_2272x1704.jpg";//源图像文件名 private Image<Bgr, Byte> imageSource = null; //源图像 private Image<Bgr, Byte> imageSourceClone = null; //源图像的克隆 private Image<Gray, Int32> imageMarkers = null; //标记图像 private double xScale = 1d; //原始图像与PictureBox在x轴方向上的缩放 private double yScale = 1d; //原始图像与PictureBox在y轴方向上的缩放 private Point previousMouseLocation = new Point(-1, -1); //上次绘制线条时,鼠标所处的位置 private const int LineWidth = 5; //绘制线条的宽度 private int drawCount = 1; //用户绘制的线条数目,用于指定线条的颜色 public FormImageSegment() { InitializeComponent(); } //窗体加载时 private void FormImageSegment_Load(object sender, EventArgs e) { //设置提示 toolTip.SetToolTip(rbWatershed, "可以在源图像上用鼠标绘制大致分割区域线条,该线条用于分水岭算法"); toolTip.SetToolTip(txtPSLevel, "金字塔层数跟图像尺寸有关,该值只能是图像尺寸被2整除的次数,否则将得出错误结果"); toolTip.SetToolTip(txtPSThreshold1, "建立连接的错误阀值"); toolTip.SetToolTip(txtPSThreshold2, "分割簇的错误阀值"); toolTip.SetToolTip(txtPMSFSpatialRadius, "空间窗的半径"); toolTip.SetToolTip(txtPMSFColorRadius, "色彩窗的半径"); toolTip.SetToolTip(btnClearMarkers, "清除绘制在源图像上,用于分水岭算法的大致分割区域线条"); //加载图像 LoadImage(); } //当窗体关闭时,释放资源 private void FormImageSegment_FormClosing(object sender, FormClosingEventArgs e) { if (imageSource != null) imageSource.Dispose(); if (imageSourceClone != null) imageSourceClone.Dispose(); if (imageMarkers != null) imageMarkers.Dispose(); } //加载源图像 private void btnLoadImage_Click(object sender, EventArgs e) { OpenFileDialog ofd = new OpenFileDialog(); ofd.CheckFileExists = true; ofd.DefaultExt = "jpg"; ofd.Filter = "图片文件|*.jpg;*.png;*.bmp|所有文件|*.*"; if (ofd.ShowDialog(this) == DialogResult.OK) { if (ofd.FileName != "") { sourceImageFileName = ofd.FileName; LoadImage(); } } ofd.Dispose(); } //清除分割线条 private void btnClearMarkers_Click(object sender, EventArgs e) { if (imageSourceClone != null) imageSourceClone.Dispose(); imageSourceClone = imageSource.Copy(); pbSource.Image = imageSourceClone.Bitmap; imageMarkers.SetZero(); drawCount = 1; } //当鼠标按下并在源图像上移动时,在源图像上绘制分割线条 private void pbSource_MouseMove(object sender, MouseEventArgs e) { //如果按下了左键 if (e.Button == MouseButtons.Left) { if (previousMouseLocation.X >= 0 && previousMouseLocation.Y >= 0) { Point p1 = new Point((int)(previousMouseLocation.X * xScale), (int)(previousMouseLocation.Y * yScale)); Point p2 = new Point((int)(e.Location.X * xScale), (int)(e.Location.Y * yScale)); LineSegment2D ls = new LineSegment2D(p1, p2); int thickness = (int)(LineWidth * xScale); imageSourceClone.Draw(ls, new Bgr(255d, 255d, 255d), thickness); pbSource.Image = imageSourceClone.Bitmap; imageMarkers.Draw(ls, new Gray(drawCount), thickness); } previousMouseLocation = e.Location; } } //当松开鼠标左键时,将绘图的前一位置设置为(-1,-1) private void pbSource_MouseUp(object sender, MouseEventArgs e) { previousMouseLocation = new Point(-1, -1); drawCount++; } //加载源图像 private void LoadImage() { if (imageSource != null) imageSource.Dispose(); imageSource = new Image<Bgr, byte>(sourceImageFileName); if (imageSourceClone != null) imageSourceClone.Dispose(); imageSourceClone = imageSource.Copy(); pbSource.Image = imageSourceClone.Bitmap; if (imageMarkers != null) imageMarkers.Dispose(); imageMarkers = new Image<Gray, Int32>(imageSource.Size); imageMarkers.SetZero(); xScale = 1d * imageSource.Width / pbSource.Width; yScale = 1d * imageSource.Height / pbSource.Height; drawCount = 1; } //分割图像 private void btnImageSegment_Click(object sender, EventArgs e) { if (rbWatershed.Checked) txtResult.Text += Watershed(); else if (rbPrySegmentation.Checked) txtResult.Text += PrySegmentation(); else if (rbPryMeanShiftFiltering.Checked) txtResult.Text += PryMeanShiftFiltering(); } /// <summary> /// 分水岭算法图像分割 /// </summary> /// <returns>返回用时</returns> private string Watershed() { //分水岭算法分割 Image<Gray, Int32> imageMarkers2 = imageMarkers.Copy(); Stopwatch sw = new Stopwatch(); sw.Start(); CvInvoke.cvWatershed(imageSource.Ptr, imageMarkers2.Ptr); sw.Stop(); //将分割的结果转换到256级灰度图像 pbResult.Image = imageMarkers2.Bitmap; imageMarkers2.Dispose(); return string.Format("分水岭图像分割,用时:{0:F05}毫秒。\r\n", sw.Elapsed.TotalMilliseconds); } /// <summary> /// 金字塔分割算法 /// </summary> /// <returns></returns> private string PrySegmentation() { //准备参数 Image<Bgr, Byte> imageDest = new Image<Bgr, byte>(imageSource.Size); MemStorage storage = new MemStorage(); IntPtr ptrComp = IntPtr.Zero; int level = int.Parse(txtPSLevel.Text); double threshold1 = double.Parse(txtPSThreshold1.Text); double threshold2 = double.Parse(txtPSThreshold2.Text); //金字塔分割 Stopwatch sw = new Stopwatch(); sw.Start(); CvInvoke.cvPyrSegmentation(imageSource.Ptr, imageDest.Ptr, storage.Ptr, out ptrComp, level, threshold1, threshold2); sw.Stop(); //显示结果 pbResult.Image = imageDest.Bitmap; //释放资源 imageDest.Dispose(); storage.Dispose(); return string.Format("金字塔分割,用时:{0:F05}毫秒。\r\n", sw.Elapsed.TotalMilliseconds); } /// <summary> /// 均值漂移分割算法 /// </summary> /// <returns></returns> private string PryMeanShiftFiltering() { //准备参数 Image<Bgr, Byte> imageDest = new Image<Bgr, byte>(imageSource.Size); double spatialRadius = double.Parse(txtPMSFSpatialRadius.Text); double colorRadius = double.Parse(txtPMSFColorRadius.Text); int maxLevel = int.Parse(txtPMSFNaxLevel.Text); int maxIter = int.Parse(txtPMSFMaxIter.Text); double epsilon = double.Parse(txtPMSFEpsilon.Text); MCvTermCriteria termcrit = new MCvTermCriteria(maxIter, epsilon); //均值漂移分割 Stopwatch sw = new Stopwatch(); sw.Start(); OpenCvInvoke.cvPyrMeanShiftFiltering(imageSource.Ptr, imageDest.Ptr, spatialRadius, colorRadius, maxLevel, termcrit); sw.Stop(); //显示结果 pbResult.Image = imageDest.Bitmap; //释放资源 imageDest.Dispose(); return string.Format("均值漂移分割,用时:{0:F05}毫秒。\r\n", sw.Elapsed.TotalMilliseconds); } /// <summary> /// 当改变金字塔分割的参数“金字塔层数”时,对参数进行校验 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void txtPSLevel_TextChanged(object sender, EventArgs e) { int level = int.Parse(txtPSLevel.Text); if (level < 1 || imageSource.Width % (int)(Math.Pow(2, level - 1)) != 0 || imageSource.Height % (int)(Math.Pow(2, level - 1)) != 0) MessageBox.Show(this, "注意:您输入的金字塔层数不符合要求,计算结果可能会无效。", "金字塔层数错误"); } /// <summary> /// 当改变均值漂移分割的参数“金字塔层数”时,对参数进行校验 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void txtPMSFNaxLevel_TextChanged(object sender, EventArgs e) { int maxLevel = int.Parse(txtPMSFNaxLevel.Text); if (maxLevel < 0 || maxLevel > 8) MessageBox.Show(this, "注意:均值漂移分割的金字塔层数只能在0至8之间。", "金字塔层数错误"); } }}